Cross-validation in high-dimensional spaces: a lifeline for least-squares models and multi-class LDA
نویسنده
چکیده
Least-squares models such as linear regression and Linear Discriminant Analysis (LDA) are amongst the most popular statistical learning techniques. However, since their computation time increases cubically with the number of features, they are inefficient in high-dimensional neuroimaging datasets. Fortunately, for k-fold cross-validation, an analytical approach has been developed that yields the exact cross-validated predictions in least-squares models without explicitly training the model. Its computation time grows with the number of test samples. Here, this approach is systematically investigated in the context of cross-validation and permutation testing. LDA is used exemplarily but results hold for all other least-squares methods. Furthermore, a non-trivial extension to multi-class LDA is formally derived. The analytical approach is evaluated using complexity calculations, simulations, and permutation testing of an EEG/MEG dataset. Depending on the ratio between features and samples, the analytical approach is up to 10,000x faster than the standard approach (retraining the model on each training set). This allows for a fast cross-validation of least-squares models and multi-class LDA in high-dimensional data, with obvious applications in multi-dimensional datasets, Representational Similarity Analysis, and permutation testing.
منابع مشابه
An improved structure models to explain retention behavior of atmospheric nanoparticles
The quantitative structure-retention relationship (QSRR) of nanoparticles in roadside atmosphere against the comprehensive two-dimensional gas chromatography which was coupled to high-resolution time-of-flight mass spectrometry was studied. The genetic algorithm (GA) was employed to select the variables that resulted in the best-fitted models. After the variables were selected, the linear multi...
متن کاملMarkov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinsonâ€TMs Disease Questionnaire (PDQ-39)
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket ar...
متن کاملMarkov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39)
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket ar...
متن کاملLWPR: A Scalable Method for Incremental Online Learning in High Dimensions
Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally efficient and numerically robust, each local model performs the regression analysis with a small n...
متن کاملIncremental Online Learning in High Dimensions
Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high-dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally efficient and numerically robust, each local model performs the regression analysis with a small n...
متن کامل